Iperreali

03 - calcolo differenziale

Liceo scientifico G.B. Grassi di Latina - <u>www.liceograssilatina.org</u> © 2021, Gualtiero Grassucci

gualtiero.grassucci@liceograssilatina.org

In collaborazione con le professoresse Annalisa Malusa e Lucilla Galterio

Un problema

- Abbiamo un punto materiale che si muove di moto rettilineo uniforme con velocità iniziale v_0 e accelerazione a>0 a partire da una posizione s_0
- L'equazione del moto sarà $s(t) = \frac{1}{2}at^2 + v_0t + s_0$, vogliamo calcolare la velocità istantanea v
- Per definizione la velocità istantanea sarà:

$$v(t) = \frac{ds}{dt} = \frac{s(t+dt) - s(t)}{(t+dt) - t}$$

Problemi introduttivi

Esercizi
Ragioniamo
Ragioniamo
Rapporto
incrementale
Differenziale
Derivata
Esempio

Ricordiamo che la velocità media è $v_{media} = \frac{s(t+\Delta t)-s(t)}{(t+\Delta t)-t}$ ma in questa espressione dt è un infinitesimo

Usando un linguaggio orientato agli infinitesimi, è il rapporto tra la variazione dello spazio e il tempo trascorso **per un intervallo di tempo infinitesimo** *dt*

Operativamente

Gli infinitesimi continuano a risolvere problemi!

- La posizione del punto all'istante $t \ \grave{e} \ s(t) = \frac{1}{2}at^2 + v_0t + s_0$
- La posizione all'istante $t + \alpha$, dove α è un tempo infinitesimo, è:

$$s(t+\alpha) = \frac{1}{2}a(t+\alpha)^2 + v_0(t+\alpha) + s_0 = \frac{1}{2}at^2 + a\alpha t + \frac{1}{2}a\alpha^2 + v_0t + v_0\alpha + s_0$$

• per cui:

$$s(t+\alpha) - s(t) = \frac{1}{2}at^2 + a\alpha t + \frac{1}{2}a\alpha^2 + v_0t + v_0\alpha + s_0 - \frac{1}{2}at^2 - v_0t - s_0$$

• ma allora:

$$\frac{dS}{dt} = \frac{\alpha(at + v_0) + \frac{1}{2}a\alpha^2}{\alpha} = at + v_0 + \frac{1}{2}a\alpha$$

• Considerato che α è un infinitesimo:

$$v(t) = \operatorname{std}\left(at + v_0 + \frac{1}{2}a\alpha\right) = at + v_0$$

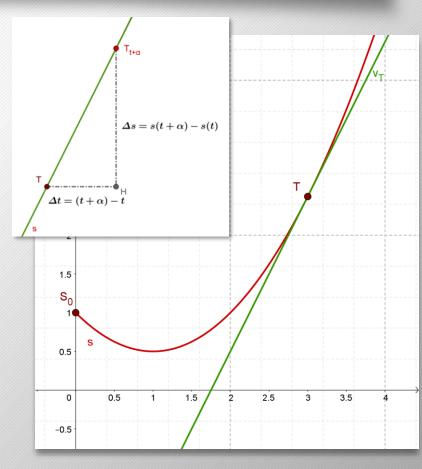
Problemi introduttivi

Esercizi
Ragioniamo
Ragioniamo
Rapporto
incrementale
Differenziale
Derivata
Esempio
Significato
geometrico
Attenzione alle
condizioni
Prossimi passi

... che è proprio la legge della velocità in un moto uniformemente accelerato

Abbiamo fatto molto di più!

- In realtà la soluzione è molto più *ricca* di quanto possa sembrare a prima vista:
 - $std \frac{ds}{dt}$ è il tasso di variazione istantanea dello spazio (variazione rispetto al tempo)
 - Se rappresentiamo s(t) su un piano cartesiano il tasso di variazione istantaneo corrisponde al coefficiente angolare della retta tangente
 - Ma abbiamo risolto questo problema per un istante (per un'ascissa) t qualunque, quindi, in un certo senso:
- Abbiamo trovato tutti i coefficienti angolari delle tangenti alla s(t) per ogni possibile $t \in \mathbb{R}$



Problemi introduttivi

Esercizi
Ragioniamo
Ragioniamo
Rapporto
incrementale
Differenziale
Derivata
Esempio
Significato
geometrico
Attenzione alle
condizioni
Prossimi passi

14=74-2

Un punto materiale, inizialmente posto nell'origine 0 di un piano cartesiano 0xy parte da fermo con velocità costante $v_0 = 3 \, m/s$ e accelerazione $a = 4 \, m/s^2$ (sia \vec{v} che \vec{a} hanno la stessa direzione e lo stesso verso dell'asse delle x:

- Determinare la legge oraria del moto
- Usare il procedimento appena visto per dimostrare che la velocità istantanea è data da v(t) = 3 + 4t
- Rappresentare su un piano cartesiano Ots la legge oraria del moto e determinare l'equazione della retta tangente nel suo punto di ascissa $\bar{t}=1$, verificare che il coefficiente angolare della retta tangente è proprio v(1)

proprio
$$V(1)$$

$$S(t) = \frac{1}{2}at^{2}+V_{0}t+S_{0} \implies S(t) = \frac{1}{2}\cdot4f^{2}+3t+0=2t^{2}+3t$$

$$S(t+x) = 2(t+x)^{2}+3(t+x)=2t^{2}+4xt+2x^{2}+3t+3x$$

$$S(t+x) - S(t) = 2t^{2}+2xt+2x^{2}+3t+3x-(2t^{2}+3t)=4xt+2x^{2}+3x=(4t+3)x+2x^{2}$$

$$\frac{dS}{dt} = \frac{(4t+3)x+2x^{2}}{t+x-t} = 4t+3+2x=4t+3 \implies V(t) = 4t+3$$

$$S - S = ur(t-1) S = urt-urtS = 0 \qquad 2t^{2}+3t=urt-urtS = 0 \qquad 2t^{2}+3t=urt-u$$

 $S-S=\omega(f-1) S=\omega f-\omega + S=D 2f^{2}+3f=\omega f-\omega +5 2f^{2}+3f-\omega f+\omega -S=0 f^{2}-1$ $2f^{2}+(3-\omega)f+\omega -S=0 \Delta=(3-\omega)^{2}-8(\omega-S)=9+\omega^{2}-6\omega-8\omega +40=\omega^{2}+4\omega +49$ $\Delta=(\omega-7)^{2}=0 \omega=7 \qquad 9=7f-2 \qquad v(1)=4+3=7$

il cofficiente augorare à propri à la velocità in quell'istante

L'uniformemente accelerato

Un punto materiale si muove sull'asse delle ascisse con legge oraria $s(t) = -t^3 + 2t$:

- Determinare la legge v(t) che rappresenta la velocità istante per istante (si otterrà $v(t) = -3t^2 + 2$)
- Quanto vale la velocità iniziale v_0 del moto?
- Utilizzando GeoGebra rappresentare su un piano cartesiano Ots la legge oraria del moto e determinare l'equazione della retta tangente nel suo punto di ascissa $\bar{t}=1$, verificare che il coefficiente angolare della retta tangente è proprio v(1)

$$t_{P}: y = -x + 2$$

$$t_{P}: y = -x + 2$$

$$t_{Q}: y = -x + 2$$

© 2019 Gualtiero Grassucci - gualtiero.grassucci@liceograssilatina.org

Riproviamo

• Vogliamo trovare la tangente a una parabola $y = ax^2 + bx + c$ nel punto x generico con lo stesso metodo:

$$dy = y(x + \delta) - y(x) = (2ax + b)\delta + a\delta^2$$

• Quindi:

$$\frac{dy}{dx} = \frac{(2ax+b)\delta + a\delta^2}{\delta} = 2ax + b + a\delta$$

• Tenendo conto che δ è infinitesimo abbiamo $\frac{dy}{dx} \sim 2ax + b$ o meglio, che il coefficiente angolare è $\mathbf{m} = \operatorname{std} \frac{dy}{dx} = \operatorname{std} (2ax + b + a\delta) = \mathbf{2ax} + \mathbf{b}$

Al variare di x questa espressione fornisce il coefficiente angolare della tangente alla parabola nel suo punto di ascissa x!

Problemi introduttivi

Esercizi
Ragioniamo
Ragioniamo
Rapporto
incrementale
Differenziale
Derivata
Esempio
Significato
geometrico
Attenzione alle
condizioni
Prossimi passi

Attenzione: per un ascissa *x* qualsiasi!

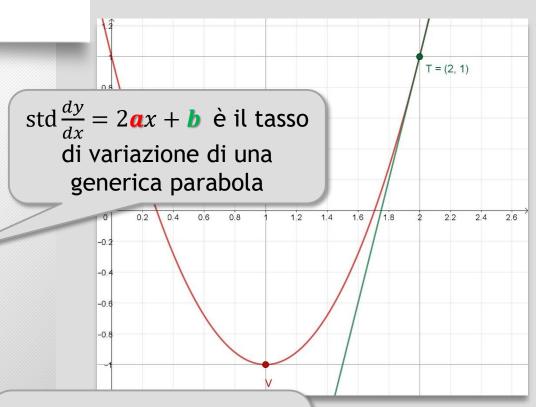
Un esercizio

- Vogliamo determinare la tangente alla parabola $y = 2x^2 4x + 1$ nel suo punto T(2,1)
- Il coefficiente angolare di una tangente generica a questa parabola è

$$m = \text{std} \frac{dy}{dx} = 2ax + b = 2 \cdot 2 \cdot x - 4 = 4x - 4$$

- Se vogliamo la tangente per x=2 dobbiamo semplicemente sostituire: $m=4\cdot 2-4=4$
- Ora non resta che sostituire il coefficiente angolare nell'equazione della generica retta passante per T

Rapido, efficace, semplice!



Questi numeri iperreali sembrano davvero sempre più utili per **risolvere i problemi!**

- Determinare l'equazione della retta tangente alla parabola $y = (-\frac{1}{2})x^2 + (4x 1)$ nel suo punto di ascissa $x_0 = 2$ usando il procedimento appena visto
- Determinare ancora la tangente alla parabola nel suo punto di ascissa $x_1=3$

$$Stol\left(\frac{dy}{dx}\right) = 2a \times + b = -x + 4$$
 $x = x = 2$ $y = -2 + 4 = 2$ della tungent alla

(stessa formula se x=3 =0 m3=-3+4=-1

coefficiente angolare
della tungente alla
penersola nel punto el
a scissa 2

toefficiente angolere della tempente alla parasola vel porasola vel

• È possibile determinare, con un metodo simile, una legge, una funzione, che fornisca il coefficiente angolare - al variare della x - alla cubica di equazione $y = \frac{1}{3}x^3 + \frac{1}{2}x^2$?

$$y(x+1) = \frac{1}{3}(x+1)^{3} + \frac{1}{2}(x+1)^{2} = \frac{1}{3}(x^{3} + 3x^{2} + 3x^{2} + 3x^{2} + 3x^{3} + \frac{1}{2}(x^{3} + 2x^{2} + 1)^{2}) =$$

$$= \frac{1}{3}x^{3} + x^{2} + x^{2} + x^{2} + \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + x^{2} + x^{2} + \frac{1}{2}x^{2}$$

$$= \frac{1}{3}x^{3} + x^{2} + x^{2} + x^{2} + \frac{1}{3}x^{3} + x^{2} + x^{2} + x^{2} + \frac{1}{2}x^{2}$$

$$= \frac{1}{3}x^{3} + x^{2} + x^{2}$$

- È possibile determinare, con un metodo simile, una legge, una funzione, che fornisca il coefficiente angolare al variare della x alla generica cubica di equazione $y = ax^3 + bx^2 + cx + d$?
- Usare la legge appena trovata per scrivere l'equazione della retta tangente alla $y=x^3-2x+3$ nel suo punto di ascissa nulla

 $y(x+6) = a(x+1)^{3} + b(x+6)^{2} + c(x+6) + d =$ $= ax^{3} + 3ax^{2}b + 3axb^{2} + bx^{2} + 25xb + 56^{2} + cx + cb + d$ questa formula (funcional formisco totti i coefficienti anaplari a = 3ax2+3ax5+25x+35+c => std(dy)= 3ax2+25x+c

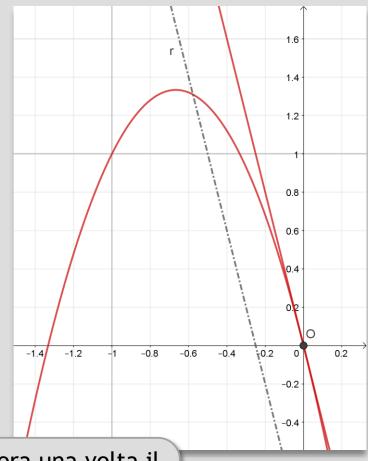
Ancora un problema

- Determinare l'equazione della tangente alla parabola $y = -3x^2 4x$ parallela alla retta r: y = -4x + 1
- La retta è tangente alla parabola nel punto in cui il tasso di variazione istantaneo è pari a -4
- Ci basta quindi determinare questo punto imponendo che std $\frac{dy}{dx} = 2ax + b = 2(-3)x 4$ sia -4:

$$-6x - 4 = -4$$
 da cui $x = 0$

• La tangente cercata è la retta per l'origine di coefficiente angolare m = -4:

$$y = -4x$$



Abbiamo usato ancora una volta il generico coefficiente angolare della tangente a una parabola applicato alla nostra curva

- Determinare la retta tangente alla parabola $y = -3x^2 2x + 2$ parallela alla retta y = 2x
- Determinare la retta tangente alla stessa parabola parallela alla retta y=-2x

Ragioniamoci un po' su

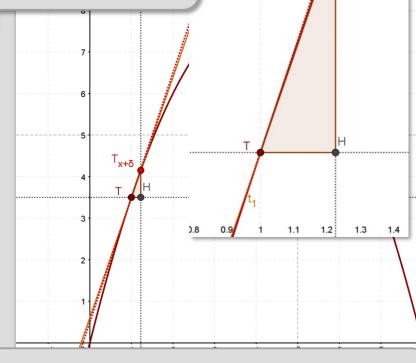
Potremmo quasi dire il tasso di variazione istantaneo

- Il **tasso di variazione medio** è il rapporto $\frac{\Delta y}{\Delta x}$ tra i due punti di una parabola di ascissa x e x + Δx
- Il **tasso di variazione** std $\frac{dy}{dx}$ è questo rapporto calcolato tra due punti distanti un infinitesimo δ

Equivale al coefficiente angolare della retta tangente nel punto x

• Abbiamo calcolato il tasso di variazione std $\frac{dy}{dx} = 2ax + b$ per una parabola generica $y = ax^2 + bx + c$

Questa formula si può usare in una miriade di problemi sulle parabole!

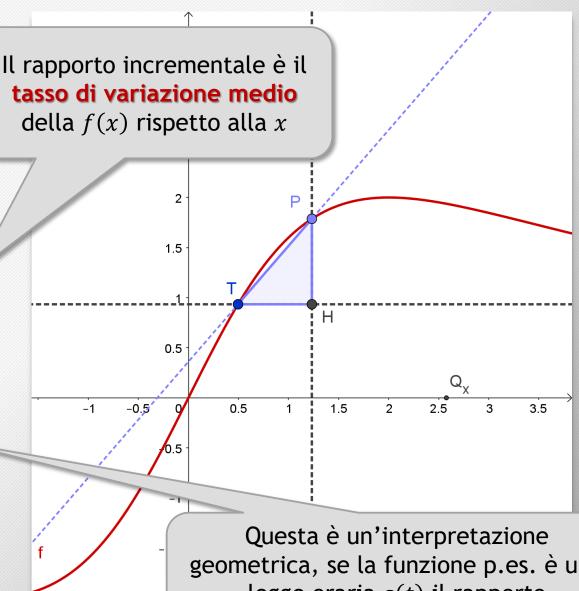


Con dy indichiamo la variazione infinitesima della y corrispondente alla variazione infinitesima dx della x

Generalizziamo: rapporto incrementale

- Sia y = f(x) una funzione qualsiasi e sia xappartenente al dominio della funzione
- Il rapporto incrementale della funzione f(x) nel punto x è $\frac{\Delta y}{\Delta x} = \frac{\Delta f(x)}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{x + \Delta x - x}$
- Il rapporto incrementale corrisponde al coefficiente angolare della retta che passa per i punti della curva di ascissa x e $x + \Delta x$...

... e ora immaginiamo di scegliere Δx infinitesimo ...



geometrica, se la funzione p.es. è una legge oraria s(t) il rapporto incrementale $\Delta s/\Delta t$ è la velocità media

Differenziale

- Nelle funzioni in genere a incrementi infinitesimi della variabile x corrispondono incrementi infinitesimi della funzione f(x)
- Sia y = f(x) una funzione qualsiasi e sia x appartenente al dominio della funzione
- Il differenziale della funzione f(x) nel punto x è: df(x) = f(x + dx) f(x)

per un incremento infinitesimo dx (il **differenziale della variabile** x)

- Useremo dx anziché Δx per indicare un incremento infinitesimo e df(x) per un incremento infinitesimo della funzione f(x)
 - un incremento che dipende dalla corrispondente variazione dx della variabile indipendente x

Problemi introduttivi Esercizi Ragioniamo Ragioniamo Rapporto incrementale

df(x) si legge de effe x e non di effe x

> Attenzione alle condizioni Prossimi passi

Derivata

Più precisamente, $f'^{(x)} = \operatorname{std} \frac{df(x)}{dx}$ è la derivata della f(x) fatta rispetto alla x

- Se calcoliamo il rapporto incrementale per variazioni infinitesime abbiamo il rapporto differenziale df(x)/dx
- Il tasso di variazione istantaneo della funzione è std $\left(\frac{df(x)}{dx}\right)$ se:
 - il rapporto $\frac{df(x)}{dx}$ ha un valore finito
 - la parte standard di $\frac{df(x)}{dx}$ non dipende da dx
- La **derivata** di una funzione f(x) in un punto x appartenente al dominio di f(x) è $f'(x) = Df(x) = std\left(\frac{df(x)}{dx}\right)$ se sono rispettate le due condizioni indicate sopra

La derivata f'(x) è una funzione ricavata dalla f(x) che fornisce punto per punto il tasso di variazione istantaneo della funzione!

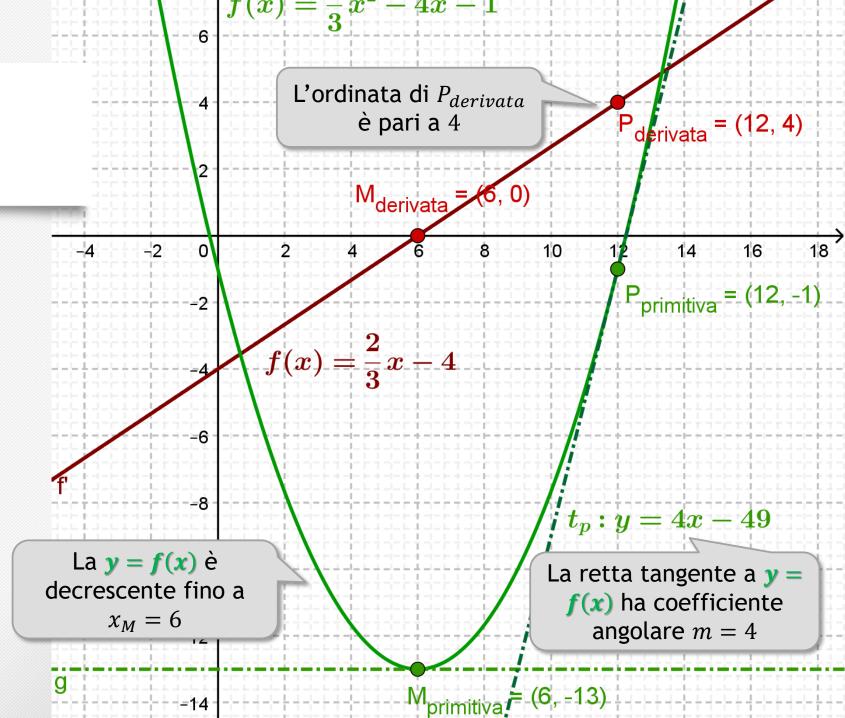
roduttivi sercizi Ragioniamo Ragioniamo Rapporto incrementale Differenziale

Derivata

Esempio Significato geometrico Attenzione alle condizioni Prossimi passi

Esempio grafico (1)

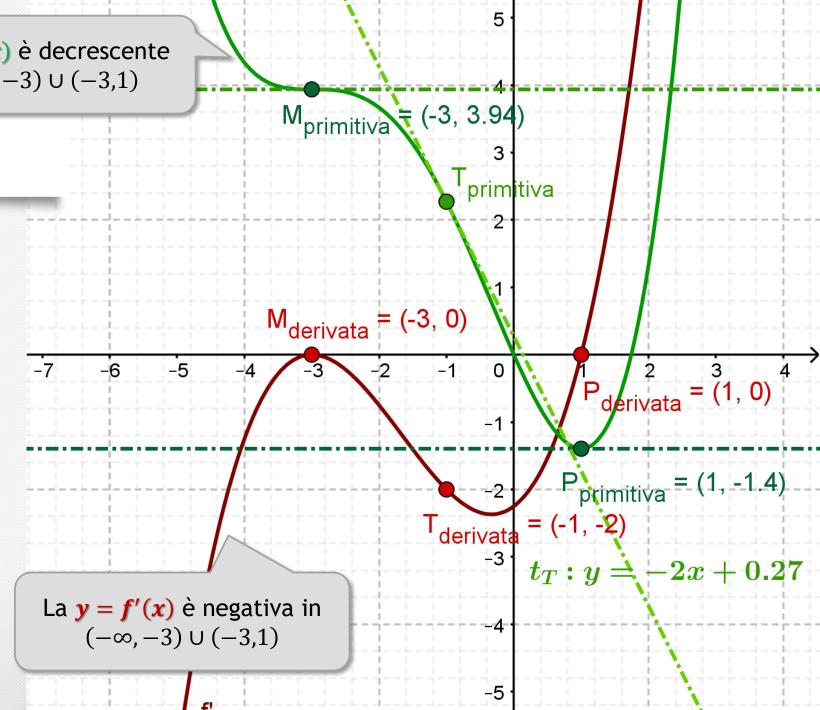
- La parabola $y = f(x) = \frac{1}{3}x^2 4x 1$ 1 è tracciata in verde
- La sua derivata $y = f'(x) = \frac{2}{3}x 4$ è tracciata in rosso scuro
- Confrontare ordinata dei punti della y = f'(x) con i coefficienti angolari della y = f(x)
 - I punti $M_{primitiva}$ e $M_{derivata}$ hanno la stessa ascissa
 - Così come i punti $P_{primitiva}$ e $P_{derivata}$
- Confrontare anche il segno della derivatay = f'(x) con gli intervalli in cui la primitivay = f(x) è crescente o decrescente



La y = f(x) è decrescente in $(-\infty, -3) \cup (-3, 1)$

Esempio grafico (2)

- La curva y = f(x) è la primitiva ed è tracciata in verde
- La sua derivata y = f'(x) è tracciata in rosso scuro
- Confrontare ordinata dei punti della y = f'(x) con i coefficienti angolari della y = f(x)
 - I punti $M_{primitiva}$ e $M_{derivata}$ hanno la stessa ascissa
 - Così come i punti $P_{primitiva}$ e $P_{derivata}$ e i punti $T_{primitiva}$ e $T_{derivata}$
- Confrontare il segno della derivatay = f'(x) con gli intervalli in cui la primitivay = f(x) è crescente o decrescente



Un esempio

- Prendiamo la funzione $f(x) = -3x^2 4x$
 - Il differenziale della funzione è:

$$df(x) = f(x + dx) - f(x) = -3(x + dx)^{2} - 4(x + dx) - (-3x^{2} - 4x)$$

• con qualche calcolo:

$$df(x) = -3x^2 - 6xdx - 3dx^2 - 4x - 4dx + 3x^2 + 4x = (-6x - 4)dx - 3dx^2$$

• La derivata è la parte standard del rapporto $\frac{df(x)}{dx}$:

$$f'(x) = \operatorname{std}\left(\frac{df(x)}{dx}\right) = \operatorname{std}\left(\frac{(-6x - 4)dx - 3dx^2}{dx}\right)^{dx} = \operatorname{std}(-6x - 4 - 3dx)$$

- E quindi f'(x) = -6x 4
- Notare che il rapporto std $\frac{df(x)}{dx}$:
 - è finito per ogni *x* finito
 - non dipende da dx

La derivata che abbiamo trovato è esattamente il tasso di variazione istantanea che avevamo calcolato in precedenza!

Problemi introduttivi Esercizi Ragioniamo Ragioniamo Rapporto incrementale Differenziale Derivata

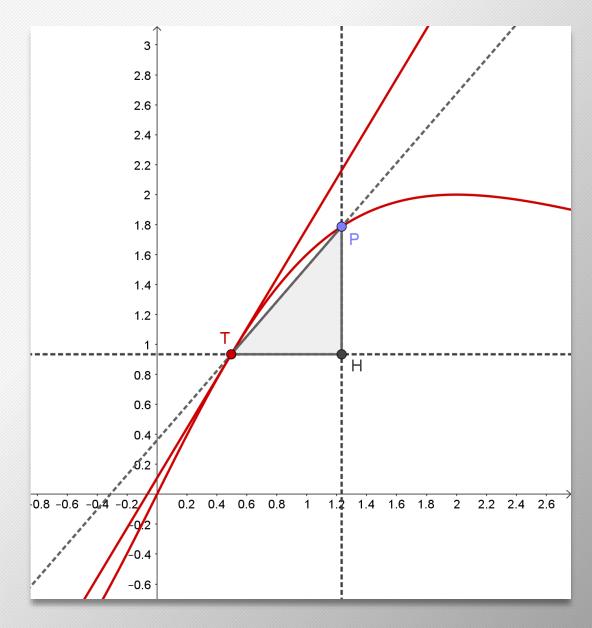
Esempio

Significato geometrico Attenzione alle condizioni Prossimi passi

Significato geometrico

- Sia y = f(x) una funzione qualsiasi e sia x appartenente al dominio della funzione
- La **derivata** della funzione f(x) nel punto x_0 è il coefficiente angolare della funzione nel punto di ascissa x_0 , infatti:
 - le due ascisse x_0 e $x_0 + dx$ sono indistinguibili
 - le due ordinate $f(x_0 + dx)$ e $f(x_0)$ sono anch'essi indistinguibili
- Quindi i due punti $T(x_0, f(x_0))$ e $P(x_0 + dx, f(x_0 + dx))$ coincidono

La retta che passa per T e P è la tangente alla curva in T!



Attenzione alle condizioni

- Si deve prestare attenzione alle due condizioni di esistenza:
 - il rapporto $\frac{df(x)}{dx}$ ha un valore finito
 - la parte standard di $\frac{df(x)}{dx}$ non dipende da dx
- Determiniamo la derivata della semiparabola $y = 2 + \sqrt{4 + 2x}$

•
$$\frac{dy}{dx} = \frac{2+\sqrt{4+2(x+dx)}-(2+\sqrt{4+2x})}{dx} = \frac{\sqrt{4+2(x+dx)}-\sqrt{4+2x}}{dx}$$

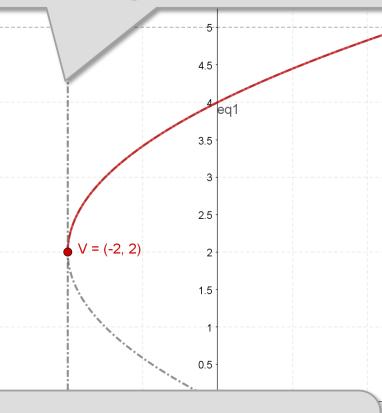
• razionalizzando al contrario

$$\frac{\sqrt{4+2(x+dx)} - \sqrt{4+2x}}{dx} \cdot \frac{\sqrt{4+2(x+dx)} + \sqrt{4+2x}}{\sqrt{4+2(x+dx)} + \sqrt{4+2x}}$$

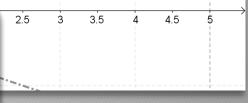
$$= \frac{2dx}{dx \left(\sqrt{4+2(x+dx)} + \sqrt{4+2x}\right)}$$

- da cui $y' = \operatorname{std} \frac{dy}{dx} = \frac{1}{\sqrt{4+2x}}$
- Se ora calcoliamo $y'(-2) = 1/\sqrt{0}!!!$

La retta tangente nel vertice della parabola (di ascissa $x_V = -2$) è verticale, quindi ha un coefficiente angolare infinito



In questo caso si dice che la y non è derivabile in x_V (non è rispettata la prima delle due condizioni)



Esercizi: data la semiellisse di equazione $y = \frac{\sqrt{16-x^2}}{2}$:

- Determinare l'equazione della tangente nel suo punto P di ascissa $x_P = 2$ utilizzando il metodo appena visto (suggerimento, per semplificare il rapporto differenziale razionalizzare al contrario)
- Una volta calcolata la derivata della y, determinare le tangenti nei sui punti di ascissa $x_{V_1} = -4$, $x_{V_2} = 4$ e $x_{V_3} = 0$, cosa si può dire della derivata in questi casi? motere che stel (dy)=0

$$y(x+dx) = \frac{\sqrt{16-(x+dx)^2}}{2}$$
 $dy = \frac{1}{2} \left[\sqrt{16-(x+dx)^2} - \sqrt{16-x^2} \right]$

$$\frac{dy}{dx} = \frac{1}{2} \frac{\sqrt{16 - (x + dx)^2 - \sqrt{16 - x^2}}}{dx} \frac{\sqrt{16 - (x + dx)^2 + \sqrt{16 - x^2}}}{\sqrt{16 - (x + dx)^2 + \sqrt{16 - x^2}}} = \frac{1}{2}$$

std
$$\left(\frac{dy}{dx}\right) = \frac{1}{2} \frac{-2x}{2\sqrt{16-x^2}} = -\frac{x}{2\sqrt{16-x^2}} = \frac{1}{2\sqrt{16-x^2}}$$

$$u_{1}=-\frac{0}{\sqrt{16}}=5$$

in questi punti G deivasile e la (con coeff. angolore

© 2020 Gualtiero Grassucci - gualtiero.grassucci@liceograssilatina.org

16-x2-2xdx-dx2-16+x2

c/x (V16-6x+dx/2+V16-x2)

I prossimi passi

- Proviamo a immaginare come procedere, se riuscissimo a determinare ...
 - le derivate delle funzioni fondamentali come $y=x,\ y=x^n,\ y=\sqrt{x},\ ...$
 - proprietà e formule delle operazioni tra le derivate, per esempio la formula per derivare $y = k \cdot f(x), \ y = f(x)/g(x), \dots$
 - proprietà e formule per derivare le funzioni composte come $y = \sqrt{f(x)}$
- Potremmo affrontare tutto un insieme di problemi utilizzando questo strumento!

Senza ogni volta calcolare il rapporto differenziale e la derivata ma utilizzando le formule e le derivate fondamentali!

Problemi
introduttivi
Esercizi
Ragioniamo
Ragioniamo
Rapporto
incrementale
Differenziale
Derivata
Esempio
Significato
geometrico
Attenzione alle
condizioni
Prossimi passi

Bibliografia

- AA.VV. Elementi di analisi non standard 2015, in Matematicamente (pubblicazione della sezione veronese di Mathesis)
- Goldoni, G. *Il calcolo delle differenze e il calcolo differenziale* 2014, Amazon fulfillment)
- Goldoni, G. I numeri iperreali- 2017, Ilmiolibro
- Robinson, A. Non standard analysis 1996, Priceton University Press
- Stecca, B. & Zambelli, D. *Analisi non standard* 2015, docplayer.it/4477695-Analisi-non-standard-release-0-0-1-b-stecca-d-zambelli.html

Problemi
introduttivi
Esercizi
Ragioniamo
Ragioniamo
Rapporto
incrementale
Differenziale
Derivata
Esempio
Significato
geometrico
Attenzione
alle condizioni
Prossimi passi